
 Adama Science and Technology University

 CHAPTER FOUR

 FUNCTIONS

Function is group of program statements that can act on data and return a value. Every C++ program has at least one function, main (). When your program starts, main () is called automatically. main () might call other functions, some of which might call still others. The reason why we use functions is to aid modularization of a program. A function reduces program size. Any fragments of code that are needed frequently in a program are best candidates to be written as a function. A function provides a convenient way of packaging computational steps, so that it can be used as often as required.
Any function has its own name, and when that name is encountered, the execution of the program branches to the body of that function. When the function returns, execution resumes on the next line of the calling function. The function body is placed in one place in memory. But it could be invoked in several places in the program.

Function Declaration / Prototype Declaration
As you can’t use variables before declarations (telling the compiler what the variable is), you can’t use function before telling the compiler what this function is. The common approach to declare functions is at the beginning of the program. The function declaration (function prototype) tells the compiler that later on in the program a function introduced in the declaration is going to be used.

Example

void getnumber();
this is a function declaration.
Void shows that the function

doesn’t have a return type. Function declaration is terminated

with semicolon. If the function has arguments, then

they should be indicated in the declaration.

Function Definition

A function definition consists of two parts: interface and body. The interface of a function (also called its prototype) specifies how it may be used. It consists of three entities:

The function name. This is simply a unique identifier.

The function parameters (also called its signature). This is a set of zero or more typed

 identifiers used for passing values to and from the function.

The function return type. This specifies the type of value the function returns.

A function which returns nothing should have the return type void.The body of a function contains the computational steps (statements) that comprise the function.

Example
void getnumber ()

function header

{

int x;

cout<< “Enter Number \n”;
 function body
function body

cin>>number;

cout<<”The number you enterd is:”<<number;

}

The function body is placed in one place in memory. But it could be invoked in several places in the program.

Calling functions

Calling functions is invoking it to execute. The function call involves the function name, followed by parentheses. The function call is similar to its declaration except that the return type is not mentioned. The call is terminated by semi colon. Executing the call statement causes the function to execute, i.e. control is transferred to the function, the statements in the function definition are executed and then control returns to the statement following the function call.

// the following program demonstrates what we have discussed so far

#include<iostream.h>

#include<conio.h>

void add ();

void sub ();

void main ()

{ char ch;

 cout <<" what do you want ? A: Add, S: subtract \n";

 cin>>ch;

 switch(ch)

 {

 case 'A':
// A for addition

 add () ;

 break;

 case 'S' :
// S for subtraction

 sub ();

 break;

 }

}

void add()

 { int a,b,c;

 cout<<"enter two numbers \n";

 cin>> a>>b;

 c = a + b;

 cout <<" the sum is \t "<< c;

 }

void sub ()

 { int a,b,c;

 cout<<"Enter two numbers \n";

 cin>>a>>b;

 cout<<"the difference is \t "<<a-b;

 }

A Simple Function
The example below shows the definition of a simple function which raises an integer to the

power of another, positive integer.

[image: image1.png]int Power (int base, unsigned int exponent)

{

int result =

for (int i = 0; i < exponent; ++i)
result *= base;
return result;

The function interface starts with the return type of the function (int in this case). The function name appears next followed by its parameter list. Power has two parameters (base and exponent) which are of types int and unsigned int, respectively Note that the syntax for parameters is similar to the syntax for defining variables: type identifier followed by the parameter name. However, it is not possible to follow a type identifier with multiple comma-separated parameters:

 int Power (int base, exponent) // Wrong!
The for-loop raises base to the power of exponent and stores the outcome in result.Finaly, the function returns result as the return value of the function. Below, example 2 illustrates how this function is called. The effect of this call is that first the argument values 2 and 8 are, respectively, assigned to the parameters base and exponent, and then the function body is evaluated.

Example 2:

[image: image2.png]#include <iostream.h>

main (void)

cout <<

\n';

When run, this program will produce the following output:

 2 ^ 8 = 256

In general, a function should be declared before its is used.

Example3:

[image: image3.png]#include <iostream.h>

int Power (int base, unsigned int exponent); // function declaration

main (void)

{
}

int Power (int base, unsigned int exponent)

{

cout << "2 * 8 = " << Power(2,8) << '\n';

int result

for (int i = 0; i < expoment; ++i)
result *= base;
return result;

Parameters and Arguments
C++ supports two styles of parameters: value and reference. A value parameter receives a copy of the value of the argument passed to it. As a result, if the function makes any changes to the parameter, this will not affect the argument. For example, in the following simple program,

Example 1
#include <iostream.h>

void Foo (int num);
int main (void)

{

int x = 10;

Foo(x);

cout << "x = " << x << '\n';

return 0;

}
void Foo (int num)

{

num = 0;

cout << "num = " << num << '\n';

}

the single parameter of Foo is a value parameter. As far as this function is concerned, num behaves just like a local variable inside the function. When the function is called and x passed to it, num receives a copy of the value of x. As a result, although num is set to 0 by the function, this does not affect x. The program produces the following output:

 num = 0;

 x = 10;

A reference parameter, on the other hand, receives the argument passed to it and works on it directly. Any change made by the function to a reference parameter is in effect directly applied to the argument. Within the context of function calls, the two styles of passing arguments are, respectively, called pass-by-value and pass-by-reference. It is perfectly valid for a function to use pass-by-value for some of its parameters and pass-by-reference for others. The former is used much more often in practice.

Example2
We can rewrite the above example so that the value x is passed by reference.

#include <iostream.h>

void Foo (int& num);
int main (void)

{

int x = 10;

Foo(x);

cout << "x = " << x << '\n';

return 0;

}
void Foo (int& num)

{

num = 0;

cout << "num = " << num << '\n';
}
Example3

#include <iostream.h>

void getdatda(int& devnd, int& divisr) ;

void divide(int divdn, int divisr, int& quot, int& rem);

void print(int quot , int rem);

int main (void)
 // a function with out a parameter can be either left free or void as a parameter
{

int a,b,c,d;

getdata(a,b);

getdata(a,b,c,d);

print(c,d);

return 0;

}

void getdata(int& dividn, int& divisr)

{

cout <<"Enter two integers”;

cin>>dividn>>divisr;

return;

}

void divide(int divdn, int divisr, int& quot, int& rem)

{

quot = dividn/divisr;

rem = dividn%divisr;

return;

}

void print(int quot , int rem)

{

cout<<"Quotient is =:"<<quot<<endl;

cout<<"Remainder is = :"<<rem<<endl;

return;

}

Global and Local Scope
Everything defined at the program scope level (i.e., outside functions) is said to have a global scope. Thus the sample functions we have seen so far all have a global scope. Variables may also be defined at the global scope:

 # include<iostream.h>

int year = 1994; // global variable

int Max (int, int); // global function

int main (void) // global function

{
int x,y;
cout<<"enter first number"<<endl;

cin>>x;

cout <<"enter the second number"<<endl;

cin>>y;

Max(x,y);

}
int Max(int x, int y)

{

if(x>y)

cout<<"the minimum is"y;

 else if (y<x)

cout<<"the minimum is"x;

 else

cout<<"they are equal";

}

Un initialized global variables are automatically initialized to zero. Since global entities are visible at the program level, they must also be unique at the program level. This means that the same global variable or function may not be defined more than once at the global level. (However, as we will see later, a function name may be reused so long as its signature remains unique.) Global entities are generally accessible everywhere in the program.

Each block in a program defines a local scope. Thus the body of a function represents a local scope. The parameters of a function have the same scope as the function body. Variables defined within a local scope are visible to that scope only. Hence, a variable need only be unique within its own scope. Local scopes may be nested, in which case the inner scopes override the outer scopes. For example, in

 int x,y,z ; // xyz is global

 void Foo (int x, int y, int z) // xyz is local to the body of Foo

 {

 if (x> 0)

 {

 double x,y,z; // xyz is local to this block

 //...

 }

 }
there are three distinct scopes; each containing a distinct xyz.Generally, the lifetime of a variable is limited to its scope. So, for example, global variables last for the duration of program execution, while local variables are created when their scope is entered and destroyed when their scope is exited. The memory space for global variables is reserved prior to program execution commencing, whereas the memory space for local variables is allocated on the fly during program execution.

Scope Operator

Because a local scope overrides the global scope, having a local variable with the same name as a global variable makes the latter inaccessible to the local scope. For example, in

int x;

void main ()

{
int x;
}

the global x is inaccessible inside main ,because it is overridden by the local x parameter. This problem is overcome using the unary scope operator :: which takes a global entity as argument:

 # include<iostream.h>

 int x=12;

void main ()
{
int x = 5; // this x is local to the main function

if (x>=::x) // here the first x refers to the local x , and the next x refers to the global x.
cout<<"the local x is greater "<<x<<endl;

elseif()x = =::x)

cout<<"both are equal, the local x is=: "<<x<<"the global x is =: "<<::x<<endl;

else

cout<<"the global x is greater it’s value is "<<::x<<endl

}
Default Arguments

Default argument is a programming convenience which removes the burden of having to specify argument values for all of a function’s parameters. For example, consider a function for reporting errors:

void Error (char message, int severity = 0);

Here, severity has a default argument of 0; both the following calls are therefore valid:

Error(‘x’, 3); // severity set to 3

Error(‘R’); // severity set to 0
As the first call illustrates, a default argument may be overridden by explicitly specifying an argument. Default arguments are suitable for situations where certain (or all) function parameters frequently take the same values. In Error, for example, severity 0 errors are more common than others and therefore a good candidate for default argument. A less appropriate use of default arguments would be:

int Power (int base, unsigned int exponent = 1);

Because 1 (or any other value) is unlikely to be a frequently-used one in this situation.
A default argument need not necessarily be a constant. Arbitrary expressions can be used, so long as the variables used in the expression are available to the scope of the function definition (e.g., global variables).

The accepted convention for default arguments is to specify them in function declarations, not function definitions. Because function declarations appear in header files, this enables the user of a function to have control over the default arguments. Thus different default arguments can be specified for different situations. It is, however, illegal to specify two different default arguments for the same function in a file.

Example

 # include<iostream.h>

int devide (int a, int b=2);

int main()

{

cout<<devide(12);// Here the default value 2 is passed as a second argument.

cout<<endl;

cout<<devide(20,4);

return 0;

}

int devide (int a, int b)

{

int r;

r=a/b;

return (r);

}

Variable Number of Arguments / Overloaded functions

Two different functions can have the same name if the prototype e of their arguments are different. That means that you can give the same name to more than one function if they have either a different number of arguments or different types in their arguments.

Example

 # include<iostream.h>

int devide (int a, int b=2);

int devide(int z, int r, int y);

float devide (float a, float b);

int main()

{

int x=20, y=2;

float n=5.0, m=2.0;

 cout<<devide(x,y);

cout<<endl;

cout<<devide(n,m);

cout<<endl;

cout<<devide(n,m,m);

cout<<endl;

return 0;

}

int devide (int a, int b)

{

return a/b;

}

int devide (int a, int b, int c)

{
int w=a/b
return w/c;

}

float devide (float x, float y)

{

return x/y;

}

In this case we have defined two functions with the same name, but one of them accept two arguments of type int and the other accepts them of type float the compiler knows which one to call in each case by examining the type when the function is called. If it is called with two ints as an argument it calls to the function that has two int arguments in the prototype if it is called with two floats it will call to the one which has two floats in its prototype.

For simplicity I have included the same code with both functions, but this is not compulsory. You can make two functions with the same name but with completely different behavior.

Inline Functions

Suppose that a program frequently requires to find the absolute value of an integer quantity. For a value denoted by n, this may be expressed as:

(n > 0 ? n : -n)

However, instead of replicating this expression in many places in the program, it is better to define it as a function:

int Abs (int n)

{

return n > 0 ? n : -n;

}
The function version has a number of advantages. First, it leads to a more readable program. Second, it is reusable. And third, it avoid undesirable side-effects when the argument is itself an expression with side-effects. The disadvantage of the function version, however, is that its frequent use can lead to a considerable performance penalty due to the overheads associated with

calling a function. For example, if Abs is used within a loop which is iterated thousands of times, then it will have an impact on performance. The overhead can be avoided by defining Abs as an inline function:

inline int Abs (int n)

{

return n > 0 ? n : -n;

}
The effect of this is that when Abs is called, the compiler, instead of generating code to call Abs, expands and substitutes the body of Abs in place of the call. While essentially the same computation is performed, no function call is involved and hence no stack frame is allocated. Because calls to an inline function are expanded, no trace of the function itself will be left in the compiled code. Therefore, if a function is defined inline in one file, it may not be available to other files. Consequently, inline functions are commonly placed in header files so that they can be shared. Like the register keyword, inline is a hint which the compiler is not obliged to observe. Generally, the use of inline should be restricted to simple, frequently used functions. A function which contains anything more than a couple of statements is unlikely to be a good candidate. Use of inline for excessively long and complex functions is almost certainly ignored by the compiler.

Example

include<iostream.h>

inline int Abs (int n)

{

return (n > 0 ? n : -n);

}
 int main()

{

 int n= -3, m=4;

cout<<Abs(n);

cout<<Abs(m);

}

Recursion
A function which calls itself is said to be recursive. Recursion is a general programming technique applicable to problems which can be defined in terms of themselves. Take the factorial problem, for instance, which is defined as:

Factorial of 0 is 1.

Factorial of a positive number n is n times the factorial of n-1.

The second line clearly indicates that factorial is defined in terms of itself and hence can be expressed as a recursive function:

int Factorial (unsigned int n)

{

return n == 0 ? 1 : n * Factorial(n-1);

}

For n set to 3, the table below provides a trace of the calls to Factorial. The stack frames for these calls appear sequentially on the runtime stack, one after the other.

[image: image4.png]n n * Factorial(n-1) | Returns
First 3 3 * Factorial(2) 6
Second 2 2 * Factorial(1) 2
Third 1 [1 * Factorial 1
Fourth 0 1 1

A recursive function must have at least one termination condition which can be satisfied. Otherwise, the function will call itself indefinitely until the runtime stack overflows. The Factorial function, for example, has the termination condition n==0 which, when satisfied, causes the recursive calls to fold back. (Note that for a negative n this condition will never be satisfied and Factorial will fail).

As a general rule, all recursive functions can be rewritten using iteration. In situations where the number of stack frames involved may be quite large, the iterative version is preferred. In other cases, the elegance and simplicity of the recursive version may give it the edge.For factorial, for example, a very large argument will lead to as many stack frames. An iterative version is therefore preferred in this case:

include<iostream.h>

int Factorial (unsigned int n);

int main()

{

int n;

cout<<"Enter a +ve number";

cin>>n;

cout<<"!"<<n<<"=:"<<Factorial(n);

return 0;

 }
int Factorial (unsigned int n)

{

if (n = = 0)

return 1;

else

return (n*(factorial(n-1));

}
Enumerations

An enumeration of symbolic constants is introduced by an enum declaration. This is useful for declaring a set of closely-related constants. For example,

enum {north, south, east, west};
introduces four enumerators which have integral values starting from 0 (i.e., north is 0, south is 1, etc.) Unlike symbolic constants, however, which are read-only variables, enumerators have no allocated memory. The default numbering of enumerators can be overruled by explicit initialization:

enum {north = 10, south, east = 0, west};
Here, south is 11 and west is 1.

An enumeration can also be named, where the name becomes a user-defined type. This is useful for defining variables which can only be assigned a limited set of values. For example, in

enum Direction {north, south, east, west};

Direction d;
d can only be assigned one of the enumerators for Direction. Enumerations are particularly useful for naming the cases of a switch statement.

Example 1

include<iostream.h>

enum Direction {north, south, east, west};

void main()

{

 Direction d=north;
switch (d)
 {

case north:

cout<<"you are moving to the north";

break;
case south:

cout<<"you are moving to the south";

break;
case east:
cout<<"you are moving to the east";

break;
case west:

cout<<"you are moving to the south";

break;
 }
}
The above program will execute the statement inside case north, which is you are moving to the north.

Exercises
1. Given the following definition of a Swap function

void Swap (int x, int y)

{

int temp = x;

x = y;

y = temp;

}

what will be the value of x and y after the following call:

x = 10;

y = 20;

Swap(x, y);

2. What will the following program output when executed?

#include <iostream.h>

int str = 15;

void Print (int str)

{

cout << str << '\n';

cout << ::str << '\n';

}

int main (void)

{

Print(50);

return 0;

}
3. Write a function which outputs all the prime numbers between 2 and a given

positive integer n:

void Primes (unsigned int n);
 A number is prime if it is only divisible by itself and 1.

4. Define an enumeration called Month for the months of the year and use it to define a function which takes a month as argument and returns it as a constant string.

5. Define an inline function called IsAlpha which returns nonzero when its argument is a letter, and zero otherwise.

6. Write a function which converts a sum of money given as an integer number of pence into a floating point value representing the equivalent number of pounds. For example 365 pence would be 3.65 pounds.
7. Define a recursive version of the Power function

8. Define a recursive function for a Fibonacci series

9. # include<iostream.h>

void sum(int a, int b);

void main()

{

int x,y;

cin>>x>>y;

sum(x,y);

}

void sum (int a, int b)

{

int sum=a+b;

cout<<"the sum="<<sum;
}

9.1. modify the function definition and the declaration of “sum()” in the above

 problem if the main function is changed to

void main()

{

 sum();

}

9.2. modify the main () function above if the in the above problem if the sum () is

modified as follow

float sum(float a, int b)

{

return (a+b);

}

PAGE
14
Fundamentals of Computer Programming

